Каталог заданий.
Треугольники
Версия для печати и копирования в MS Word
1
Задание № 61
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



2
Задание № 421
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



3
Задание № 451
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



4
Задание № 481
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



5
Задание № 511
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



6
Задание № 1760
i

Тре­уголь­ник ABC  — рав­но­бед­рен­ный с ос­но­ва­ни­ем AB. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC тре­уголь­ни­ка ABC.



7
Задание № 1792
i

Тре­уголь­ник ABC  — рав­но­бед­рен­ный с ос­но­ва­ни­ем BC. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BCA тре­уголь­ни­ка ABC.



8
Задание № 242
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  38°, ∠AMN  =  109°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.



9
Задание № 902
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  32°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.



10
Задание № 932
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  41°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.



11
Задание № 962
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  35°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.



12
Задание № 992
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  37°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.



13
Задание № 1125
i

В тре­уголь­ни­ке ABC из­вест­но, что \angle A = 40 гра­ду­сов,\angle B = 100 гра­ду­сов. Ука­жи­те номер вер­но­го утвер­жде­ния для сто­рон тре­уголь­ни­ка.



14
Задание № 1155
i

В тре­уголь­ни­ке ABC из­вест­но, что \angle A = 70 гра­ду­сов,\angle B = 40 гра­ду­сов. Ука­жи­те номер вер­но­го утвер­жде­ния для сто­рон тре­уголь­ни­ка.



15
Задание № 1185
i

В тре­уголь­ни­ке ABC из­вест­но, что \angle A = 50 гра­ду­сов,\angle B = 80 гра­ду­сов. Ука­жи­те номер вер­но­го утвер­жде­ния для сто­рон тре­уголь­ни­ка.



16
Задание № 1893
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABCC  =  90°, CH  — вы­со­та, про­ве­ден­ная к ги­по­те­ну­зе, BH=3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та ,BCH  =  30°. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Длина сто­ро­ны ВС тре­уголь­ни­ка АВС равна ...

Б)  Длина сто­ро­ны АС тре­уголь­ни­ка АВС равна ...

B)  Рас­сто­я­ние от точки пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка ABC

до сто­ро­ны AB равно ...

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  6 ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та

2)  12 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та

3)  6 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та

4)   дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

5)  9 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та

6)  18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

17
Задание № 1925
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABCC  =  90°, CH  — вы­со­та, про­ве­ден­ная к ги­по­те­ну­зе, BH=2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,BCH  =  30°. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­нияОкон­ча­ние пред­ло­же­ния

A)  Длина сто­ро­ны ВС тре­уголь­ни­ка АВС равна ...

Б)  Длина сто­ро­ны АС тре­уголь­ни­ка АВС равна ...

B)  Рас­сто­я­ние от точки пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка ABC

до сто­ро­ны AB равно ...

1)   ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

2)  8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

3)  12

4)  6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

5)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

6)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

18
Задание № 1958
i

В ту­по­уголь­ном тре­уголь­ни­ке АВС (∠С > 90°) ВС  =  4 и длины двух дру­гих сто­рон яв­ля­ют­ся це­лы­ми чис­ла­ми. Пе­ри­метр тре­уголь­ни­ка АВС равен 13. Для на­ча­ла каж­до­го из пред­ло­же­ний A−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Длина сто­ро­ны АВ тре­уголь­ни­ка АВС равна ...

Б)  Ко­си­нус угла ВАС тре­уголь­ни­ка АВС равен ...

B)  Пло­щадь тре­уголь­ни­ка АВС равна ...

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)   дробь: чис­ли­тель: 43, зна­ме­на­тель: 48 конец дроби

2)  6

3)  5

4)   дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 455 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби

5)   дробь: чис­ли­тель: 29, зна­ме­на­тель: 36 конец дроби

6)   дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 455 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

19
Задание № 2022
i

В ту­по­уголь­ном тре­уголь­ни­ке АВС (∠С > 90°) ВС  =  5 и длины двух дру­гих сто­рон яв­ля­ют­ся це­лы­ми чис­ла­ми. Пе­ри­метр тре­уголь­ни­ка АВС равен 15. Для на­ча­ла каж­до­го из пред­ло­же­ний A−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­нияОкон­ча­ние пред­ло­же­ния

A)  Длина сто­ро­ны АВ тре­уголь­ни­ка АВС равна ...

Б)  Ко­си­нус угла ВАС тре­уголь­ни­ка АВС равен ...

B)  Пло­щадь тре­уголь­ни­ка АВС равна ...

1)   дробь: чис­ли­тель: 15 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби

2)   дробь: чис­ли­тель: 13, зна­ме­на­тель: 14 конец дроби

3)  7

4)  6

5)   дробь: чис­ли­тель: 11, зна­ме­на­тель: 14 конец дроби

6)   дробь: чис­ли­тель: 15 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 1592
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник АВС, в ко­то­ром \angle}ABC=104 гра­ду­сов, \angle}ACB=29 гра­ду­сов. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла ANM че­ты­рех­уголь­ни­ка ABMN.



21
Задание № 1623
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник АВС, в ко­то­ром \angle}ABC=102 гра­ду­сов, \angle}ACB=37 гра­ду­сов. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла ANM че­ты­рех­уголь­ни­ка ABMN.



22
Задание № 1036
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  32. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.



23
Задание № 1066
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  35. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.



24
Задание № 1096
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  21. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.



25
Задание № 1946
i

Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC, если AM − BM  =  4.



26
Задание № 2010
i

Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC, если AM − BM  =  2.



27
Задание № 2180
i

В пря­мо­уголь­ном тре­уголь­ни­ке ABC  левая круг­лая скоб­ка \angle ABC = 90 гра­ду­сов пра­вая круг­лая скоб­ка BH и BK  — вы­со­та и ме­ди­а­на со­от­вет­ствен­но, про­ве­ден­ные к ги­по­те­ну­зе (см. рис.). Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка ABC, если BK  =  7,  синус \angle BKH = дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби .


Ответ:

28
Задание № 2210
i

В пря­мо­уголь­ном тре­уголь­ни­ке ACB  левая круг­лая скоб­ка \angle ACB = 90 гра­ду­сов пра­вая круг­лая скоб­ка CH и CK  — вы­со­та и ме­ди­а­на со­от­вет­ствен­но, про­ве­ден­ные к ги­по­те­ну­зе (см. рис.). Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка ACB, если CK  =  8,  синус \angle CKH = дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .


Ответ:

29
Задание № 10
i

В тре­уголь­ни­ке ABC: ∠С  =  90°, ∠А  =  60°, АС  =  3. Най­ди­те длину бис­сек­три­сы, про­ве­ден­ной из вер­ши­ны угла А к сто­ро­не BC.



30
Задание № 12
i

От­ре­зок AB пе­ре­се­ка­ет плос­кость α в точке O. Точка M делит от­ре­зок AB в от­но­ше­нии 3 : 2, счи­тая от точки А. Из точек А, В, M про­ве­де­ны па­рал­лель­ные пря­мые, пе­ре­се­ка­ю­щие плос­кость α в точ­ках A1, B1, M1 со­от­вет­ствен­но. Най­ди­те длину от­рез­ка ММ1, если AA_1= ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та , BB_1=3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та .



31
Задание № 1039
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK4 см; 5 см; 8 см
ΔBDC3 см; 4 см; 5 см
ΔFBC7 см; 8 см; 9 см
ΔCDE5 см; 11 см; 13 см


32
Задание № 1069
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC7 см; 9 см; 10 см
ΔMNK4 см; 6 см; 8 см
ΔBDC8 см; 15 см; 17 см
ΔFBC6 см; 13 см; 15 см
ΔCDE3 см; 4 см; 5 см


33
Задание № 1099
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK7 см; 12 см; 17 см
ΔBDC5 см; 8 см; 9 см
ΔFBC6 см; 8 см; 10 см
ΔCDE3 см; 6 см; 7 см


34
Задание № 1309
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=8, \ctg \angle BAC = ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.



35
Задание № 1340
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=24, \ctg \angle BAC = 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.



36
Задание № 197
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  2, AB  =  4, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та .



37
Задание № 677
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  4, AB  =  9, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та .



38
Задание № 707
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  2, AB  =  6, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 31 конец ар­гу­мен­та .



39
Задание № 737
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  3, AB  =  6, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та .



40
Задание № 767
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  4, AB  =  8, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та .



41
Задание № 228
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  15 и AO  =  10, то длина сто­ро­ны AC равна:



42
Задание № 798
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  12 и AO  =  9, то длина сто­ро­ны AC равна:



43
Задание № 828
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  8 и AO  =  5, то длина сто­ро­ны AC равна:



44
Задание № 858
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  16 и AO  =  12, то длина сто­ро­ны AC равна:



45
Задание № 888
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  10 и AO  =  6, то длина сто­ро­ны AC равна:



46
Задание № 1786
i

АС  — общая ги­по­те­ну­за пря­мо­уголь­ных тре­уголь­ни­ков ABC и ADC. Плос­ко­сти этих тре­уголь­ни­ков вза­им­но пер­пен­ди­ку­ляр­ны. Най­ди­те квад­рат длины от­рез­ка BD, если AB=9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , BC=9 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , AD  =  DC.


Ответ:

47
Задание № 1818
i

АС  — общая ги­по­те­ну­за пря­мо­уголь­ных тре­уголь­ни­ков ABC и ADC. Плос­ко­сти этих тре­уголь­ни­ков вза­им­но пер­пен­ди­ку­ляр­ны. Най­ди­те квад­рат длины от­рез­ка BD, если AB=8 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , BC=3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , AD  =  DC.


Ответ:

48

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­де­ны вы­со­ты BE и CD. Най­ди­те длину CB, если ED = 12 и ра­ди­ус окруж­но­сти, опи­сан­ной во­круг AED равен 10.


Ответ:

49
Задание № 1181
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­де­ны вы­со­ты BE и CD. Най­ди­те длину CB, если ED = 16 и ра­ди­ус окруж­но­сти, опи­сан­ной во­круг AED равен 17. Ука­жи­те в от­ве­те ве­ли­чи­ну 15CB.


Ответ:

50
Задание № 1211
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­де­ны вы­со­ты BE и CD. Най­ди­те длину CB, если ED = 14 и ра­ди­ус окруж­но­сти, опи­сан­ной во­круг AED равен 25. Ука­жи­те в от­ве­те ве­ли­чи­ну 12CB.


Ответ:

51
Задание № 29
i

В пря­мо­уголь­ный тре­уголь­ник AOB, ка­те­ты ко­то­ро­го OA и OB (OA > OB) лежат со­от­вет­ствен­но на ко­ор­ди­нат­ных осях Ox и Oy, впи­са­на окруж­ность ра­ди­у­са 10. Най­ди­те сумму ко­ор­ди­нат точки ка­са­ния окруж­но­сти и ги­по­те­ну­зы AB, если тре­уголь­ник AOB лежит в пер­вой чет­вер­ти ко­ор­ди­нат­ной плос­ко­сти и его пло­щадь равна 600.


Ответ:

52
Задание № 269
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 11 : 3, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в пять раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

53
Задание № 929
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 11 : 1, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в шесть раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

54
Задание № 959
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 6 : 1, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в че­ты­ре раза боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A пять раз обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

55
Задание № 989
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 11 : 2, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в семь раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

56
Задание № 1019
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 10 : 3, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в шесть раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

57
Задание № 1904
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?


Ответ:

58
Задание № 1936
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 11 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?


Ответ:

59
Задание № 2270
i

Ра­ди­ус окруж­но­сти, опи­сан­ной около пря­мо­уголь­но­го тре­уголь­ни­ка ABC  левая круг­лая скоб­ка \angle ABC = 90 гра­ду­сов пра­вая круг­лая скоб­ка , равен 18 ко­рень из 2 . Най­ди­те зна­че­ние вы­ра­же­ния 90 умно­жить на ко­си­нус \angle ACB, если BC = 6 ко­рень из 2 .


Ответ:

60
Задание № 2286
i

На ри­сун­ке изоб­ра­же­ны по­доб­ные тре­уголь­ни­ки АВС и A1B1C1. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны B1C1 тре­уголь­ни­ка A1B1C1.



61

На ри­сун­ке изоб­ра­же­ны по­доб­ные тре­уголь­ни­ки АВС и A1B1C1. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны A1C1 тре­уголь­ни­ка A1B1C1.



62
Задание № 2361
i

Ра­ди­ус окруж­но­сти, опи­сан­ной около пря­мо­уголь­но­го тре­уголь­ни­ка ABC  левая круг­лая скоб­ка \angle ABC = 90 гра­ду­сов пра­вая круг­лая скоб­ка , равен 10 ко­рень из 2 . Най­ди­те зна­че­ние вы­ра­же­ния 64 умно­жить на ко­си­нус \angle ACB, если BC = 5 ко­рень из 2 .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.